

Agri-Food Robotics Research at OSU

Joe Davidson (joseph.davidson@oregonstate.edu)

School of Mechanical, Industrial, & Manufacturing Engineering Oregon State University

ODI Conference 2024

- Robotics, Automation, and Artificial Intelligence (AI) at Oregon State University
- The USDA NIFA-funded AI Institute for Transforming Workforce and Decision Support (AgAID)
- Current research projects at the Intelligent Machines & Materials Lab (IMML)

Leadership

University Strategic Plan 2024-30

Mission, Values and Vision President's Message Three Goals Five Actions Top Five Targets Implementation Appendix and Archive

"Over the next several years we will prioritize four areas for investment and growth: climate science and related solutions, clean energy technology and related solutions, **robotics**, and integrated health and biotechnology. To support work in these areas, **we will build foundational strength across the university in artificial intelligence**, data science and research computing"

Collaborative Robotics and Intelligent Systems (CoRIS) Institute

Oregon State University

Director: AD, Research: AD, Policy: Artificial Intelligence PD: Robotics PD: Kagan Tumer Julie A. Adams Tom Dietterich Prasad Tadepalli Cindy Grimm

CoRIS Institute: Vision

What is our vision ?

Look at full impact of robotics and intelligent systems

CoRIS Institute: Vision

What enables that vision? What is our competitive advantage?

Dynamic, world class faculty

Talented, bright students

Collaborative OSU culture

Strong "consumer" base: Ag sci., oceanography, forestry

CoRIS Institute: Education

- Top Ranked Robotics Graduate Program
 - 9% of applicants admitted for fall 2022 (~550 applicants)
 - Enrollment: 35 M.S. & 45 Ph.D.
- Artificial Intelligence Graduate Program
 - 30% of applicants admitted for fall 2022 (~380 applicants)
 - Enrollment: 28 M.S. & 20 Ph.D.

Undergraduate Inclusion

- Capstone Projects
- 70+ research students
- NSF REUs
 - Robotics site (2014-2023, 90 students + 90 supplement students)
 - AI related REUs (2021-2022, 18 supplement students)
- Clubs: Robotics (400+ students), Artificial Intelligence (180+ students)

1st place 2018 International Mars Rover Competition

The NIFA-funded National AI Research Institutes

- Lead: U. Minnesota
- Climate-smart Ag, Carbon
- Forestry

- <u>Lead:</u> Washington State U.
 Water, Labor, Farm Operations
- Specialty crops

AIFARMS Artificial Intelligence for Future Agricultural Resilience, Management, and Sustainability

Lead: U. Illinois Urbana-Champaign

- Future Ag, Resilience, Edge Computing, Sustainability
- Commodity crops and livestock

<u>Lead:</u> U California, Davis
Food systems, supply

- chain, nutrition
- Post-harvest

Lead: Iowa State U.

- Resilient Ag, Digital twins for plants, Breeding
- Commodity crops

AgAID: Al Institute for Transforming Workforce & Decision Support

UNIVERSITY VIRGINIA

AgAID Core Areas of Strengths & Locations

AgAID Team & Core Strengths

*Ag Extension driven by WSU, UCM, and OSU

**All institutions take part in education and broader impact activities

AgAID Institute: Three major areas of impact (for Ag)

How can AI help agriculture secure the future in food production?

Water

- Water scarcity and drought
- Climate change

Status quo: Suboptimal water allocation

Weather

 Weather events can cause severe crop damage and loss (e.g., frost, heat stress)

<u>Status quo:</u> Suboptimal management decisions

Labor

 Increasing production costs, and shortage in unskilled and skilled labor

<u>Status quo:</u> Uncertain and variable profitability

Specialty crops: crop diversity (300+), significant fraction (87%) of U.S. Ag workforce, mostly irrigated high value crops, ~40% perennial systems

AgAID: Major Thrust Areas

Specialty cropping systems we are focusing on so far...

Tree fruits Apples and Cherries

Grapes

Nut trees Almonds and Pistachios

Berries Blueberries

Summary of AI capabilities being developed

AI capabilities

- Al can mitigate **risks**
- Al can quantify uncertainty
- AI can help with **labor**
- Al can fuse data and scientific knowledge
- Human-centric design can empower humans using Al
- AI can provide a testing ground

Realizations in Ag (use-inspired AI)

- Frost management (prediction to control)
- Deficit irrigation
- Intelligent pruning and thinning
- Mechanical harvesting
- Streamflow/snowpack prediction
- Fallow prediction
- Digital ag twin and farm simulators

The AgAID Vision and Approach

AgAID Approach: The institute will be guided by three unifying principles: *Adopt-Adapt-Amplify*:

Adoption as a first principle in AI design;Adaptability to changing environments and multiple scales;

Amplifying human skills and machine efficiency through a close human-AI partnership.

Partner engagement: AI designers, Ag researchers, a wide range of partners, and next-generation scientists and workforce.

Int'l partnerships with support from USDA NIFA & NSF

3-way partnership

- Wageningen University & Research, Netherlands
- University of Technology Sydney, Australia
- Pontificia Universidad Católica de Chile, Chile

AgAID: Research Landscape

Labor intelligence use case: Robotic dormant season pruning

Al usually requires lots of data, often with human-annotated training data. This is very resource intensive!

We can use synthetic data & digital environments to train perception models & robot controllers.

Robot control for pruning

Top right photo courtesy of Kate Prengaman/Good Fruit Grower.

A. You et al., "Precision fruit tree pruning using a learned hybrid vision/interaction controller," IEEE ICRA, 2022.

Collaboration with the University of Tokyo

Project focus: 1) Tree modeling and 2) Dormant-season, robotic renewal pruning

Bi axe, 'Cosmic Crisp' apple orchard

UFO sweet cherry orchard

Enabling technology: GNSS-free in-row localization

Segmentation

Clearpath Warthog autonomous ground robot

Width estimation

T. Wang et al., "Automatic estimation of trunk cross sectional area using deep learning," ECPA, 2023.

Precision nitrogen fertilization

Labor intelligence use case: Robotic apple harvesting

The seasonality of agricultural production constrains data collection and the development cycle.

We can use a 'physical twin' to train robots how to pick fruit all year round!

But is the proxy realistic?

Apples Location

Reference Frame

Analysis of z force during Pick-phase

Case	Domain	Peak [N]	Slope [N/m]	AUC [J]
Succ	Real	15.3 (6.7)	450 (210)	0.31 (0.2)
	Proxy	14.3 (3.5)	543 (141)	0.22 (0.1)
Fail	Real	14.6 (7.0)	372 (201)	0.50 (0.3)
	Proxy	8.4 (4.8)	345 (201)	0.19 (0.2)

A classifier for predicting pick success trained solely on the proxy performed similarly to one trained solely on real world data.

Using the proxy in the design process

sensor

SO

0

E

Suction cup experiments

A multi-modal, 'intelligent' harvesting end-effector

Collaboration with Wageningen University & Research

How should we tune picking actions based on the orchard system and fruit cultivar?

Deformable object manipulation

Project scope: Use collaborative robots to manipulate deformable objects (e.g., wire assemblies, fabric, hoses) using only in-hand tactile sensing

Contactile PapillArray sensors

Acknowledgements

Cindy Grimm, OSU

Menno Sytsma, WUR

Manoj Karkee,

WSU

Jostan Brown, OSU

Matt Whiting,

WSU

Achyut Paudel,

Stefan Lee, OSU

Ashley Thompson, Sinisa Todorovic, OSU

Jochen Hemming, WUR

Dawood Ahmed, WSU

Liqiang He, OSU

OSU

Nidhi Parayil, OSU

Grower collaborators: Allan Bros. Fruit &

Olsen Bros. Ranches, Inc.

WSU

OSU

Alejandro Velasquez Lopez, OSU

Mark Frost, OSU

Miranda Cravetz, OSU