

Dairy research and program capabilities at Utah State University

Prateek Sharma, PhD

Nutrition Dietetics and Food Science Department, Utah State University, Logan, USA

Oregon Dairy Industry Conference, April 19, 2023

Outline

About myself

- NDFS department-Food Science program
- Western Dairy Centre/BUILD Dairy
- Student product development competitions
- Aggie Creamery/Dairy Production lab capabilities
- My research program
- Other research programs

Nutrition, Dietetics & Food Sciences College of Agriculture & Applied Sciences

2

About myself- Prateek Sharma

Professional experience

Assistant Professor, Utah State University (2020-present)

Marie Curie Career-FIT Fellow, Ireland (2019)

Post-Doc, Teagasc/DPTC, Ireland (2017-2018)

PhD Scholar, Riddet Institute/Fonterra Research and Development Centre, New Zealand (2012-16) Scientist (Dairy Processing), National Dairy Research Institute, Karnal (2010-12; 2016-17). Senior Innovation Scientist, Dairygold Food Ingredients, Ireland. (2008-2010)

R&D Technologist, Glanbia Food Ingredients, Ireland (2007-08)

QA Executive, Amul, India (2004-05)

Graduate Intern, Schreiber Dynamix, India (2002)

Education

PhD: Massey University through PGP funding (2016)

EU MS: Food Science, Technology & Nutrition (2008)

DIT (Ireland), KaHO Sint Lieven (Belgium), Hochschule Anhalt (Germany), UCP (Portugal)

MTech: Dairy Technology (2004)

National Dairy Research Institute, Karnal (India)

BTech: Dairy Technology (2002)

Maharana Pratap University of Agriculture & Technology (India)

UtahState

Schreiber, Dynamix

Riddet Institute

Ready to reconstitute dairy products

Diffusion of small solutes in model cheese matrices

About My research

Cheese structure, rheology and functionality

> Demineralisation of whey and isolation of whey proteins

Directly acidified milk drinks

Process development for indigenous dairy products

Emulsion based delivery systems

Rheology landscape

 $1 \int dH$ $\overline{2} \overline{H \cdot dt}$

Steady Shear rheology

Sharma et al. 2016. Food Hydrocolloids, 54, 266-277

Sharma, et al. 2015. International Dairy Journal, 47, 102-108

10

10

Time (s)

100

1000

Sharma et al. 2016. International Dairy Journal, 56, 108-118

-1 0 1 2

Raw shear rate (s-1), 7,---

100.0

0.1 0 0.1 0.2

Raw shear rate (s-1), y.,

10.0

-0.5 0

51.8

Strain,%

Microscopy landscape

3.5 kJ.kg⁻¹ CSLM-Mozzarella cheese

CSLM-Double emulsions

Light microscopy-Double emulsions

SEM Paneer

Fluorescent Microscopy-Emulsions

TEM- Double Emulsion

- Advanced training on Cryo-SEM/ ESEM, TEM from Prof. Bryony James, Auckland • University
- Thorough understanding of principles of X-ray scattering techniques, micro-CT, Small angle X-ray, Synchrotron etc.

ESEM-sheared cheese

Cryo-SEM cheese

Outline

About myself

- NDFS department-Food Science program
- Western Dairy Centre/BUILD Dairy
- Student product development competitions
- Aggie Creamery/Dairy Production lab capabilities
- My research program
- Other research programs

Nutrition, Dietetics & Food Sciences

Minors, Associates and Certificates

- Food Science (Minor)
- Hunger and Food Security Studies (Minor)

Undergraduate Degrees

- Coordinated Program Emphasis
- Didactic Program Emphasis
- Dietetics (BS)
- Food Science (BS)
- Nutrition Science (BS)
- Pre-Health Emphasis
- Sports Nutrition Emphasis

Silvana Martini

Marie Walsh

Robert Ward

Sulaiman Matarneh Luis Bastarrachea

Taylor Oberg

Graduate Degrees

- Dietetics Administration (MDA)
- Dietetics Internship Graduate Certificate
- Food Safety & Quality (MFSQ)
- Nutrition & Food Science (MS, PhD)
- Public Health Nutrition (MPH)
- Four USDA-NIFA grant in 2022 ۲
- ~20 undergraduate food science students
- ~20 graduate students \bullet

Heidi Wengreen

Master's Degree in 33 Credits

Fully online

Flexibility for Working Professionals

Karin Allen

Program Director Karin.allen@usu.edu 435-797-1768

Outline

About myself

NDFS department-Food Science program

- Western Dairy Centre/BUILD Dairy
- Student product development competitions
- Aggie Creamery/Dairy Production lab capabilities
- My research program
- Other research programs

MDC

WESTERN DAIRY CENTER

Program Overview

The "BUILD" in BUILD Dairy stands for "Building University-Industry Linkages through Learning and Discovery". By bringing together students, professors, universities and companies, we can help strengthen every link in the dairy chain.

Learn more >

Universities & Faculty

Our program is centered around education. University professors and faculty members play a key role in aiding our efforts to broaden the network of technically trained, knowledgeable professionals in the industry.

Learn more 🔊

Admission Requirements

BUILD offers opportunities for both undergraduate and graduate level students. Any college or university student can be involved in the BUILD Dairy program, if their program of study or research is in some way related to dairy foods or the dairy industry.

<u>Learn more</u> >

Stipend Funding

BUILD offers stipends for students to help them further their education and contribute meaningful research with real-world dairy applications.

Learn more 🔈

Short Courses & Workshops

The Western Dairy Center offers artisan and industrial cheese making classes. We partner with other educators to provide specialized and personalized workshops for companies. For more information on customized workshops, email <u>westcent@usu.edu</u>.

Cheese making Short Courses

Cheese making short courses are held once yearly. Students will spend time in the classroom learning definitions, terminology, techniques, and the science of making cheese. They will also get hands-on experience making a variety of cheeses in our dairy plant. Classes are limited to 15 people and fill up quickly, so register early. For registration information, email <u>westcent@usu.edu</u> or call 435-797-3466.

Basic Cheese making Short Course

The Basic Cheese Making Short Course is a three-day class designed for the beginning cheese maker and those who have never made cheese before. The course will include an introduction to milk, cheese, dairy cultures and the steps in cheese making. Students will spend a day in the pilot plant making three varieties of cheese the old fashioned way, by hand.

Career Opportunities

BUILD aligns university research initiatives with the priorities of dairy companies, naturally readying students for careers in the industry. And we actively work to match graduates with dairy companies looking for the best and brightest in the field.

Learn more >

Eric Bastian

Advanced Cheese making Short Course

This four-day course is for people who have cheese making experience and want to expand their knowledge of milk chemistry, cheese chemistry, curd handling and controlling cheese manufacture. This class will cover the basics of how to make cheese as well as a more in-depth exploration of the science of cheese making and flavor development of cheese. Students will spend two days in the pilot plant making several different varieties of cheese.

Dairy Powders

DIVERSE COMPOSITIONS

CONNECTING SCIENCE AND DAIRY TO LAUNCH CAREERS

BUILDdairy.com

Outline

- About myself
- NDFS department-Food Science program
- Western Dairy Centre/BUILD Dairy
- Student product development competitions
- Aggie Creamery/Dairy Production lab capabilities
- My research program
- Other research programs

Nutrition, Dietetics & Food Sciences College of Agriculture & Applied Sciences

12

PINE APPLE-COCONUT

31g

Protein

130mg

Caffeine

Keep Refrigerated

210

Calories

No

Added

Sugar

16 oz (454 g)

REA

Moba Boba - dairy-based energy drink fused with high protein gummies. Utilizing untapped channels of raw and potent energy, Moba Boba fuels your thrist for performance while helping the human team journey towards a more balanced and sustainable future. Buff your game with Moba Boba!

INGREDIENTS: Acid Whey, Reduced Fat Milk, Caffeine Concentrate, Gelatin, Whey Protein Isolate, SPLENDA, Whey Protein Phospholipid Concentrate (WPPC), Pineapple Flavoring, Coconut Flavoring, Stevia Leaf extract

CONTAINS: milk

NDFS-National Dairy Council Product Development competition

Mackenzie Taylor Nathan Paugher Chandler Stafford Melissa Marsh

Dairy Product Development Competition

USU Technology Highlight:

MOOGETS

A USU team has developed a meatless alternative to the traditional chicken nugget. The award-winning "Moogets" are dairy-based nuggets that are packed with protein and provide a taste and texture similar to traditional chicken nuggets.

PROBLEM

Many consumers who have eliminated or reduced their meat intake are deficient in at least one of protein, vitamin B12, or calcium. Thus, there is a need for meatless food products with higher levels of these nutrients than what is currently being offered. There is also a need for a meatless nugget that can replicate the taste and texture of the traditional chicken nugget.

SOLUTION

In response to these needs, USU researchers have developed "Moogets" using

CONTACT

Questions about this technology including licensing availability can be directed to:

CHRISTIAN IVERSON

Director **Technology Transfer Services** (435) 797-9620 christian.iverson@usu.edu

INVENTORS

Ireland Green, Sophie Overbeck, Melissa Marsh, Jun Mun Yang and Savannah Branson

Outline

- About myself
- NDFS department-Food Science program
- Western Dairy Centre/BUILD Dairy
- Student product development competitions
- Aggie Creamery/Dairy Production lab capabilities
- My research program
- Other research programs

Nutrition, Dietetics & Food Sciences College of Agriculture & Applied Sciences

16

Sensory tasting panel room

Research kitchen

Ice Cream

- Continuous freezer
 - Nut feeder (inclusions)
 - Variegate pump
 - Cup filler (4 oz and pint)
 - Manual filling ½ gal and 10 qt
- Batch freezers
 - 2.5 gallon and 2 quart ml capacity

Cheese

Horizontal Cheese Vats (HCV)

- 1500 lb capacity
- Two vats (can be simultaneous)
- Drain table with stirrors

Open vats

- 500 lb capacity
- Manual cutting and stirring
- 3 vats for individual or simultaneous makes

Horizontal Process cheese cooker

Single screw mozzarella cheese cooker and stretcher

Filtration System

- 4-module of spiral bound membrane
- membranes
- Make: Synder Filtration, Vacaville, CA
- MWCO: 10-kD
- Model: ST-2–3838,
- m² surface area;

• Membrane Type: spiral-wound polyethersulfone

• Size: 10 cm × 100 cm with a 0.76-mm spacer, 7-

Yogurt making equipment

- 100-gallon capacity
- Inoculation and blending tank
- Adjustable smoothing valve for texture control
- Packaging machine

Microbial Biofermentation

- Lab scale dual 1 L biofermentation unit
- Precise control of:
 - pH
 - Aerobic/Anaerobic
 - Temperature
- Potential use: Model cheese preparation for cheese buffering project

Agilent 2100 Bioanalyzer

- Perform rapid quantification and size measurements on:
 - DNA
 - RNA
 - Protein
- Quality check DNA/RNA for high throughput sequencing

Outline

- About myself
- NDFS department-Food Science program
- Western Dairy Centre/BUILD Dairy
- Student product development competitions
- Aggie Creamery/Dairy Production lab capabilities
- My research program
- Other research programs

Nutrition, Dietetics & Food Sciences College of Agriculture & Applied Sciences

24

Understanding the pizza baking properties of **Mozzarella cheese**

- Low-moisture part skim milk Mozzarella cheese is widely consumed as a pizza ingredient.
- Pasta- filata cheese
- Functional properties - Melting
 - Stretchability
 - Oiling off
 - -Browning and blistering
- Major factors contributing to functionality include milk composition, manufacturing process, cheese composition, calcium, residual sugars, and ageing.

Anjali Verma

*Low calcium , better melting, stretchability,

Cheese functionality analysis

Melting

Stretchability

Residual Sugars

Anton Paar MCR-302

- Oscillatory rheology •
- Temperature sweep • test (20°C-90°C)

TA-XT Plus Texture Analyzer.

- Using extensibility rig
- Cheese extended to 260 cm

Megazyme enzymatic kit

Spectrophotometer at 340 nm wavelength will be used to obtain the absorbance value

➤ Mozzarella cheese is produced using 1500 lbs. of milk at USU's pilot plant facility. > Other analysis includes moisture, fat, salt, protein, free oil %, expressible serum, UREA-PAGE, shreddability work.

Texture Profile analysis

Pizza baking

TA-XT Plus Texture Analyzer.

• Using texture profile analysis rig • Hardness, springiness, cohesiveness, chewiness are determined

Air forced impinger over

- Baking done at 250°C/6 min
- Visual appearance
- Image analysis through Image J

Wear Behaviors of Process Cheese With Varying Formulations and the Development of Predictive Models on Shreddability

Tribological (wear) Tests

Pin on Disk arrangement Important parameters:

- 1. Mass loss
- 2. Penetration depth

Jason Young

Shreddability Index

Shreddability Index ∝ length of shreds + production of fines + adhesion to equipment

(Apostolopoulos C., and R.J. Marshall al 1994; Childs, et al., 2007)

S = 3.22 + 0.83M - 2.41P

S = shreddability index score

 $\mathbf{M} = \text{mass loss}$

 \mathbf{P} = penetration depth

Development of predicting models for sliceability of Cheddar cheese using wear behavior and mechanical properties

Hypothesis :

- Cheese sliceability will be dependent on the cheese composition (fat, moisture, protein) and the age of the cheese (extent of proteolysis).
- The combination of wear behavior and other texture/rheological measurements can be used to develop a predictive modeling system for measuring cheese sliceability.

Methods: Wear behavior Tack test Texture profile analysis Cheese slice quality measurements

Results: lacksquare

- Quantitative measurement of cheese slice quality index.
- Establishing a relationship cheese slice quality and its functional properties, with the development of predictive formula

Understanding the Impact of Colloidal Calcium Phosphate on the pH Variation in Cheddar Cheese During Early Stages of Aging

Issue

Cheese may have pH variations that can cause quality issues in the cheese's texture, body, and flavor.

changes in the **calcium equilibrium**. in the final cheddar cheese.

I Develop a method to measure the colloidal calcium phosphate (CCP) levels in the curd during cheesemaking.

Objectives

Track the state of CCP and its changes during the manufacturing process and in the early stages of storage.

Rachel Lindstrom

Hypothesis

- The pH variation in cheddar cheese is linked to the
- We intend to identify factors that affect calcium equilibrium

Ionic calcium

Ultra-centrifuge

Insoluble calcium (INSOL Ca)

0.07

0.06

Bufferin 0.02

0.01

0

Calcium ion active probe

SAMPLING PLAN

Each number represents a point in the cheesemaking

process when a sample will be taken.

Assessing Impact of Food Structure on Nutrient Delivery of Food Proteins

Introduction

Objectives

Study the mechanical properties, such as rheology and tribological properties of the selected dairy products

Study the impact of food protein type on *in vitro* digestibility of proteins and their rate of release

Nutrition, Dietetics & Food Sciences College of Agriculture & Applied Sciences

Lamis Ali

HYPOTHESIS

The variation in food structure will impact the mouthfeel sensation, and the rate of protein digestion and nutrient releases in the gastro-intestinal tract

Methodology

Cheddar

Nutrition, Dietetics & Food Sciences **College of Agriculture & Applied Sciences**

Digestion time (min)

What's new

Particle size analysis

Impact of Moisture Content & Composition on Flow Properties of Dairy Powders

Hypothesis

Powder flowability is impacted by the relative humidity & temperature of the environment & storage time. Powder composition & particle size also affect flow properties

Why Study Rheology?

- ✓Prevent core flow issues
- ✓ Decrease impact of environmental exposure
- ✓ Ensure high quality product
- ✓ Reduce production downtime

Katelynn Palmer

Materials & Techniques

Materials High Protein

Milk Powders

Milk Powder Permeate

Physical Properties

Particle Size Analysis

Bulk Density

SEM

Flow Characteristics

- **Powder Rheometer**
 - Shear Cell

Relative Humidity Generator

Flow Cell

Filament extension atomizer

Multiple filament break-up

Single filament break-up

Ashutos Parhi

Rapid, parallel filament break-up into drops \rightarrow Aerosol!

Effect of particle shape and size on the flowability of dry whey, WPC 80 and MCC powders

Scanning Electron Microscopy images of dairy powders

Powder	D 10 (µm)	D 50 (µm)	D 90 (µm)	Mean size volume averaged (D[4,3]) (μm)
Drv whev	22.7±0.38	89.2±0.93	234.3±5.89	115.4±2.23
WPC 80	29.9+0.86	85.8+0.87	228.7+1.74	113.6+1.14
	14 2 0 42		100 110 00	
IVICC	14.3±0.42	61.6±1.04	180.1±2.62	85.0±1.06

Cold gelling properties of HC-MCC

- Highly Concentrated-Micellar Casein Concentrate
 - 17-23% protein in solution
- Forms a gel in cold temperatures
- Goal: understand and optimize gelation

HC-MCC diluted to minimum

protein concentration

(16.8%)Test with 5 acidity levels on a wt/wt % basis of GDL (0, 0.5, 1, 1.5, 2)3 Stages of testing 1) 1 hour Frequency sweep @ 60°C Cold gelled HC-MCC @ 5°C 2) 1 hour temperature sweep

DAIRY

from 60°C to 5°C 3) 10 hour Frequency sweep @ 5°C

Nathan Pougher

Methods

- Modify HC-MCC with different treatments
 - Dilution, calcium chelation, pH adjustment, carrageenan addition

• Multiwave rheological measurements

- Winter and Chambon criterion for gelation determination
- Additional testing for better understanding
 - Texture analysis
 - Particle size & zeta potential
 - Urea PAGE
 - TEM Imaging

Urea PAGE of Modified HC-MCC Supernatants

structure is easily visible, and variation in micelle size is evident.

- C: β-casein
- D: β-casein fragment (f1-192)
- E: α_{s1} -casein

Figure 5: TEM imaging of unmodified 18.5% protein HC-MCC at increasing magnification levels from left to right. The micellar

Outline

- About myself
- NDFS department-Food Science program
- Western Dairy Centre/BUILD Dairy
- Student product development competitions
- Aggie Creamery/Dairy Production lab capabilities
- My research program
- Other research programs

Other dairy research projects

- Taylor Oberg
 - Genome analysis methods to screen lactococcus starter cultures for bitter-related genes and differentiate using qPCR for Lactococcus lactis and Lactococcus cremoris species in cheddar cheese. (Brantzen Wood)
 - Use of protective lactic acid bacteria adjunct cultures to decrease the incidence of gas defects in cheddar cheese. (Rhees Crompton)
 - Studying the interaction between a starter culture *Lactococcus* lactis and the non-starter Paucilactobacillus wasatchensis, and their contribution to late gas defects in the cheese. (Niharika Mishra)
 - Understanding the effect that cheddar cheese starter cultures have on the pH during the early stages of aging. (Sam Clarke)
 - Using *Lactobacillus curvatus* as a potential preservative adjunct culture in yogurt. (Chase Wahlstrom)

Other dairy research projects

Annalisa Broadhead Silvana Martini

- Taylor Oberg
 - Genome analysis methods to screen lactococcus starter cultures for bitter-related genes and differentiate using qPCR for Lactococcus lactis and Lactococcus cremoris species in cheddar cheese. (Brantzen Wood)
 - Use of protective lactic acid bacteria adjunct cultures to decrease the incidence of gas defects in cheddar cheese. (Rhees Crompton)
 - Studying the interaction between a starter culture *Lactococcus* lactis and the non-starter Paucilactobacillus wasatchensis, and their contribution to late gas defects in the cheese. (Niharika Mishra)
 - Understanding the effect that cheddar cheese starter cultures have on the pH during the early stages of aging. (Sam Clarke)
 - Using *Lactobacillus curvatus* as a potential preservative adjunct culture in yogurt. (Chase Wahlstrom)
- Silvana Martini
 - Physical properties of Butter and water loss. (Annalisa Broadhead)

Salt diffusion in renneted casein gel

- ✓ Microstructure analysis Fast Green
- ✓ Salt diffusion Corona Green

MCC gel (15% Protein)-1 ml	Corona Green 100 μM (wt/v)	Fast Green 1% (wt/v)	MCC solution + GDL - 2% w/v + Rennet
pH 5.4	20µl	10 µl	1 ml+20 mg+ 10 µl
рН 6.8	20 µl	10 µl	1 ml +0+10 μl

Total duration= 40 minutes Tile scan Configuration: 200 FramesX5 tiles Size: 1.87 mmX425.10 μm

40 μL of each solution was slowly injected into the chamber of an IBIDI cell, and carefully spread to cover the one third of the channel length

Horizontally incubated at 30 °C for 30 min for coagulation then 2h at 20°C

0.4 mm channel height

Salt diffusion in model cheese

Total duration= 40 minutes Each second corresponds to Approx 1 min Configuration: 200 FramesX5 tiles Size: 1.87 mmX425.10 µm

Concentration of Na⁺ increasing

Future projects- looking for PhD students

- Elucidating mechanism of formation of thermoreversible gels from associative protein-polysaccharide mixtures. (USDA-NIFA 2023-26)
- Understanding impact of concentrated plasmin system due to ultrafiltration and microfiltration process on the quality of Cheddar cheese produced from high protein ingredients. (DMI/NDC 2023-26)
- Grad student search
 - Fall/Spring start, Interested candidate send CV, two references and SOP ASAP to prateek.sharma@usu.edu

Thank you for your kind attention

DEPARTMENT OF NUTRITION, DIETETICS & FOOD SCIENCES COLLEGE OF AGRICULTURE & APPLIED SCIENCES